SYNTHESIS AND CHARACTERIZATION OF γ-MnO₂ FROM LiMn₂O₄

M. M. THACKERAY*, A. DE KOCK and L. A. DE PICCIOTTO

Division of Materials Science and Technology, CSIR, P.O. Box 395, Pretoria 0001 (South Africa)

G. PISTOIA

Centro di Studio per la Elettrochimica e la Chimica Fisica delle Interfasi, CNR, Rome (Italy)

Summary

 γ -MnO₂ can be synthesized by acid treatment of the spinel LiMn₂O₄; it is formed via an intermediate λ -MnO₂ phase. The γ -MnO₂ phase is significantly more crystalline and contains less occluded water than electrolytically prepared MnO₂ (EMD). Unlike EMD, the occluded water can be removed almost entirely by heating the γ -MnO₂ phase to 300 °C. Heating to 300 °C causes a transformation of the γ -MnO₂ structure to a predominantly β -MnO₂ phase. The discharge capacity of the β -phase in room-temperature lithium cells is comparable with the capacity of the γ/β -MnO₂ phase which is formed by heating EMD to 350 - 420 °C. Lithium-ion diffusion rates in the γ -MnO₂ and β -MnO₂ phases derived from the spinel precursor were determined to be 1×10^{-9} cm² s⁻¹ and 2×10^{-10} cm² s⁻¹, respectively.

Introduction

Li/MnO₂ batteries play a small, but significant, role in the world's battery industry. The manganese dioxide that is used predominantly in these batteries is prepared electrolytically (EMD). EMD has a γ -type structure which is generally regarded to be an intergrowth of a rutile- and a ramsdellite-type structure. EMD contains, typically, 5 wt.% H₂O which must be removed from the structure to ensure effective operation and long life of the battery. Heat-treatment of EMD to 350 - 420 °C removes about 80% of the water and causes a transformation of the γ -MnO₂ structure to a γ/β -MnO₂ phase [1]. During discharge of the battery, Li⁺ ions are inserted into, and reduce, the γ/β -MnO₂ phase to yield the product Li_xMnO₂ (0 < x < 1) [2]. This type of battery cannot be recharged or cycled to any useful extent.

Considerable attention has been given recently to the application of the spinel-related manganese dioxide phase, λ -MnO₂, in lithium batteries.

^{*}Author to whom correspondence should be addressed.

 λ -MnO₂ is an anhydrous product which can be prepared at room temperature by lithium extraction from the spinel Li[Mn₂]O₄ [3]; it has the [Mn₂]O₄ spinel-framework structure. Lithium can also be inserted into Li[Mn₂]O₄. Powder X-ray and neutron diffraction data have shown that the [Mn₂]O₄ spinel framework remains intact over a wide compositional range, Li_x[Mn₂]-O₄ (0 < x < 2) [3 - 6]. Cyclic voltammetry studies have shown that lithium may be cycled in, and out of, λ -MnO₂, thereby rendering this material an attractive electrode for a secondary lithium battery [7]. Although lithium extraction from Li[Mn₂]O₄ occurs readily in acid at 25 °C [3], electrochemical extraction beyond Li_{0.5}[Mn₂]O₄ appears to be difficult [8].

It has been reported recently that acid digestion of λ -MnO₂ transforms the [Mn₂]O₄ spinel framework into a γ -MnO₂ product with an anomalously low water content [9]. The water can be almost entirely removed by heat treatment to 300 °C. However, this heat treatment causes a transformation of the γ -phase to a structure with predominant β -MnO₂ characteristics.

It has been established that β -MnO₂ with a well-developed rutile structure does not exhibit good electrochemical activity in lithium cells [10]; a maximum uptake of 0.2 Li⁺ ions per β -MnO₂ unit has been reported [11]. By contrast, it has been found that the β -MnO₂ phase derived from a λ -MnO₂ precursor shows surprisingly good electrochemical activity in lithium cells. The electrochemical properties of this β -phase are reported in this paper and compared with the performance of standard heat treated EMD samples.

Experimental

The preparation of λ -MnO₂ and γ -MnO₂ by reacting LiMn₂O₄ with 0.5 M H₂SO₄ has been reported in detail elsewhere [9].

The water content of MnO_2 samples was calculated from their $[H^+]$ concentration, which was determined by gravimetric methods (0.1 wt.% $[H^+]$ corresponds to approximately 1.0 wt.% H_2O). A Malvern Instruments Master Particle Sizer M3.0 was used to obtain particle-size distributions in the MnO_2 samples. Powder X-ray diffraction patterns were recorded on an automated Rigaku diffractometer with Cu K α radiation, monochromated by a curved graphite crystal. Lithium-ion diffusion rates (\tilde{D}) in MnO_2 samples were determined by a method described by Basu and Worrell [12], with a Princeton Applied Research (PAR) Model 173 potentiostat/galvanostat coupled to a Model 175 programmer. The slopes of the open-circuit voltage curves required for the diffusion measurements were obtained from Li/ MnO_2 cells between the compositional limits x = 0.02 and x = 0.08 in Li_xMnO₂. Lithiated MnO_2 cathodes were considered to have equilibrated when the cell voltage varied by less than 1 mV in 24 h. Electrochemical tests were carried out in two separate laboratories in cells of the type:

Li/1 M LiClO₄ in PC, DME*/MnO₂

^{*}PC = propylene carbonate; DME = dimethoxyethane.

Details of cell construction are given elsewhere [13, 14]. At the CSIR (South Africa) cells were discharged at constant current at low rates, typically at 30 μ A cm⁻². At the CNR (Italy), the discharge capacity and cycling behaviour of cells containing spinel-derived β -MnO₂ and standard EMD cathodes were compared at a higher current density (1 mA cm⁻²); in these cells 20 wt.% Teflon acetylene black (TAB) was added to the cathode to improve the electronic conductivity and strength of the compacted MnO₂ electrode.

Results and discussion

The reaction conditions used for the preparation of some selected MnO_2 samples from $LiMn_2O_4$, heat treatment temperatures and $[H^+]$ values, as reported in ref. 9, are given in Table 1. The $[H^+]$ concentrations in EMD samples and heated products are also tabulated for comparison. Powder X-ray diffraction patterns of $LiMn_2O_4$, λ -MnO₂ and a standard, anhydrous β -MnO₂ sample, prepared by decomposing $Mn(NO_3)_2$ in air at 400 °C [15], are shown in Fig. 1(a) - (c). X-ray patterns of a γ -MnO₂ sample derived from $LiMn_2O_4$, EMD, and their heat treated products are given in Fig. 2(a) - (c) and Fig. 3(a) - (c).

Lithium extraction from LiMn_2O_4 at 25 °C yields the anhydrous, highly crystalline λ -MnO₂ phase [3]. The structure of λ -MnO₂ has been well characterized [5, 6]; it has the [Mn₂]O₄ spinel framework, as evident from the strong similarity in the powder X-ray diffraction patterns of λ -MnO₂ and LiMn₂O₄ (Fig. 1(a) and (b)). If the reaction temperature is raised to 40 °C and the reaction time with acid is extended (Table 1), a γ -MnO₂ product is

TABLE 1

Reaction conditions used for the preparation of various MnO_2 samples from $LiMn_2O_4$ in 0.5 M H_2SO_4 [9]

Starting material	Reaction temp. (°C)	Reaction time (days)	Heat treatment (°C)	End- product	[H ⁺] (wt.%)
LiMn ₂ O ₄	25	4	75	λ-MnO ₂	0.03
LiMn ₂ O ₄	40	13	75	γ -MnO ₂	0.13
LiMn ₂ O ₄	40	13	200	γ -MnO ₂	0.09
LiMn ₂ O ₄	40	13	300	β -MnO ₂	0.02
LiMn ₂ O ₄	40	13	350	β -MnO ₂	0.01
EMD (IC 1)	_		75	γ -MnO ₂	0.50
EMD (IC 1)	_		350	γ/β -MnO ₂	0.07
EMD (Delta)*	_	-	75	γ -MnO ₂	0.50
EMD (Delta)	_	-	350	γ/β -MnO ₂	0.10
EMD (Delta)	_	_	420	γ/β -MnO ₂	0.09

*Obtained from Delta (EMD) (Pty) Ltd, Nelspruit, South Africa.

Fig. 1. Powder X-ray diffraction patterns of (a) $LiMn_2O_4$; (b) λ -MnO₂; (c) a standard, anhydrous β -MnO₂ sample prepared from Mn(NO₃)₂.

Fig. 2. Powder X-ray diffraction patterns of manganese dioxide samples prepared from $LiMn_2O_4$. (a) γ -MnO₂; (b) β -MnO₂ (after heating (a) to 300 °C); (c) β -MnO₂ (after heating (a) to 350 °C).

Fig. 3. Powder X-ray diffraction patterns of (a) EMD; (b) " γ/β -MnO₂" (after heating (a) to 350 °C); (c) predominantly β -MnO₂ (after heating (a) to 420 °C).

obtained (Fig. 2(a)). The X-ray pattern in Fig. 2(a) is similar to that reported for other chemically prepared MnO₂ products [16, 17]. This γ -MnO₂ phase is significantly more crystalline than EMD (Fig. 3(a)). The γ -MnO₂ phase, after drying at 75 °C, contains only ~1 wt.% H₂O ([H⁺] = 0.13 wt.%). Heat treatment to 300 °C removes the water almost entirely and results in a transformation to β -MnO₂ (Fig. 2(b)). The broad peaks in the pattern are attributed to strain in the individual crystallites. Further heating to 350 °C results in a sharpening of the peaks, indicative of the development of a more crystalline and less strained β -MnO₂ product (Fig. 2(c)). The X-ray pattern of a well-developed β -MnO₂ phase is shown in Fig. 1(c) for comparison.

By contrast, EMD materials contain appreciably more water than the γ -MnO₂ phase described above, as reflected by their [H⁺] concentration (0.5 wt.% [H⁺]). When heated to 350 °C - 420 °C, EMD loses between 80 and 86% of its water. The powder X-ray pattern of EMD heated to 420 °C (Fig. 3(c)) resembles that of the initial EMD phase (Fig. 3(a)), but clearly shows the onset of β -MnO₂ formation, as indicated by the broad peak at 28° 2 θ ; these results are consistent with published data for EMD [1].

The electrochemical discharge behaviour of lithium cells containing β -MnO₂ cathodes derived from the LiMn₂O₄ spinel is compared with the performance of cells containing γ/β -MnO₂ cathodes from heat treated EMD, and with a standard β -MnO₂ product (Fig. 4). Cells with EMD cathodes, whether heated at 350 °C or 420 °C, delivered a capacity equivalent to the uptake of 0.59 Li⁺ ions per MnO₂ (182 mA h g⁻¹) when discharged to a cutoff voltage of 2.5 V. A cell containing the standard β -MnO₂ cathode with a

Fig. 4. Discharge characteristics of various Li/MnO₂ cells (30 μ A cm⁻²). 1, Spinel-derived β -MnO₂ heated at 300 °C; 2, spinel-derived β -MnO₂ heated at 420 °C; 3, EMD, heated at 350 °C; 4, EMD, heated at 420 °C; 5, β -MnO₂ from Mn(NO₃)₂.

highly developed structure gave a very poor capacity (0.21 Li⁺/MnO₂, 65 mA h g⁻¹), which is consistent with earlier reports [10, 11]. However, β -MnO₂ cathodes derived from LiMn₂O₄ gave surprisingly high capacities. A cell containing a cathode, heated to 350 °C, discharged at the same voltage as an Li/EMD cell (2.9 V) and delivered a marginally superior capacity (0.61 Li⁺/MnO₂, 188 mA h g⁻¹); cathodes heated to 300 °C discharged at a slightly higher voltage (3.0 V), but provided a significantly enhanced capacity (0.68 Li⁺/MnO₂, 210 mA h g⁻¹).

Reaction of spinel-derived β -MnO₂ and heat treated EMD samples with an excess of n-butyllithium at room temperature showed that both compounds react readily with one Li⁺ ion per MnO₂ unit. With heat treated EMD, one lithium is inserted into the γ/β -MnO₂ structure to yield the lithiated product, LiMnO₂. Lithium insertion causes a shift of the peaks in the X-ray pattern of EMD to lower 2θ values, indicative of an expansion of the EMD lattice [2]. However, powder X-ray diffraction patterns of lithiated β -MnO₂ samples showed an amorphous "LiMnO₂" product which could not be characterized. It is relevant to mention, however, that the reaction of a highly crystalline β -MnO₂ product with an excess of n-butyllithium at 50 °C yields the lithiated spinel phase $Li_{2}[Mn_{2}]O_{4}$ [18]. A mechanism for the transformation of lithiated β -MnO₂ to spinel has been proposed; it involves a lithium insertion reaction, which is accompanied by a shear of the distorted hexagonal-close-packed oxygen lattice in rutile to the cubic-closepacked lattice in spinel, and a migration of one half of the manganese ions to neighbouring octahedral sites. It is conceivable that this process also occurs when the spinel derived β -MnO₂ product is lithiated. The high reactivity of this β -MnO₂ phase (both chemical and electrochemical) compared with a highly crystalline β -MnO₂ phase can be largely attributed to its small average particle size (7.5 μ m) and to the strain in the particles. The

LiMn ₂ O ₄		γ -MnO ₂		EMD	
Size band (µm)	%	Size band (µm)	%	Size band (µm)	%
118.4 - 54.9	0.0	118.4 - 54.9	0.0	564.0 - 261.7	0.2
54.9 - 33.7	2.5	54.9 - 33.7	0.0	261.7 - 160.4	2.9
33.7 - 23.7	28.7	33.7 - 23.7	0.0	160.4 - 112.8	7.0
23.7 - 17.7	32.7	23.7 - 17.7	0.0	112.8 - 84.3	9.6
17.7 - 13.6	19.0	17.7 - 13.6	0.4	84.3 - 64.6	10.8
13.6 - 10.5	9.3	13.6 - 10.5	9.8	64.6 - 50.2	11.0
10.5 - 8.2	4.3	10.5 - 8.2	28.5	50.2 - 39.0	10.7
8.2 - 6.4	2.0	8.2 - 6.4	28.5	39.0 - 30.3	9.6
6.4 - 5.0	0.9	6.4 - 5.0	17.4	30.3 - 23.7	8.3
5.0 - 3.9	0.4	5.0 - 3.9	8.6	23.7 - 18.5	6.9
3.9 - 3.0	0.2	3.9 - 3.0	3.8	18.5 - 14.5	5.5
3.0 - 2.4	0.1	3.0 - 2.4	1.7	14.5 - 11.4	4.3
2.4 - 1.9	0.0	2.4 - 1.9	0.7	11.4 - 9.0	3.3
1.9 - 1.5	0.0	1.9 - 1.5	0.3	9.0 - 7.2	2.5
1.5 - 1.2	0.0	1.5 - 1.2	0.1	7.2 - 5.8	1.9
Mean particle size = $20.4 \ \mu m$		Mean particle size = 7.5 μm		Mean particle size = 41.1 μm	

Particle-size distribution in LiMn₂O₄, γ -MnO₂, and EMD (Delta) samples

TABLE 2

amorphous nature of the lithiated product is attributed to an extremely small particle size, which results from the break up of the strained β -MnO₂ particles during lithiation.

Particle-size distributions of typical EMD, LiMn_2O_4 and γ -MnO₂ (ex LiMn₂O₄) samples used in this investigation are compared in Table 2. It is noteworthy that the mean particle size of γ -MnO₂ (7.5 µm) is significantly smaller than that of EMD (41.1 µm). Note also that the mean particle size of γ -MnO₂ is appreciably smaller than that of the LiMn₂O₄ parent material (20.4 µm); the reduction in particle size is a result of the dissolution of Mn²⁺ ions during the formation of the λ -MnO₂ precursor according to the reaction [3]:

$2\text{LiMn}_2\text{O}_4 \longrightarrow \text{Li}_2\text{O} + 3\text{MnO}_2 + \text{MnO}_2$

The cycling behaviour of spinel-derived β -MnO₂ and heat treated (360 °C) EMD I.C.1 cathodes, containing TAB, in cells operated at 1 mA cm⁻² (charge and discharge) is compared in Fig. 5. These cathodes yielded an initial discharge capacity of 206 mA h g⁻¹ MnO₂ (0.67 Li⁺/MnO₂) and 208 mA h g⁻¹ (0.68 Li⁺/MnO₂), respectively. The cells lost capacity rapidly on cycling, as expected.

Li⁺-ion diffusion rates (\tilde{D}) in heat treated, spinel-derived γ -MnO₂ and β -MnO₂ phases were determined to be significantly higher than in corresponding heat treated, standard EMD and β -MnO₂ phases. For example, for a

Fig. 5. Cycling behaviour of Li/MnO₂ cells (1 mA cm⁻² discharge and charge). (a) Spinelderived β -MnO₂, heated at 300 °C; (b) EMD (I.C.1, heated at 360 °C).

spinel-derived γ -MnO₂ phase that had been heated to 200 °C ([H⁺] = 0.09 wt.%), $\tilde{D} = 1 \times 10^{-9}$ cm² s⁻¹ in contrast to $\tilde{D} = 9 \times 10^{-11}$ cm² s⁻¹ for a heat treated EMD sample ([H⁺] = 0.10 wt.%). \tilde{D} values for the anhydrous β -MnO₂ phases derived from LiMn₂O₄ and Mn(NO₃)₂ were 2×10^{-10} cm² s⁻¹ and 6×10^{-11} cm² s⁻¹, respectively. The value of \tilde{D} obtained in this work for the standard samples of EMD and β -MnO₂ compare well with data reported elsewhere, *viz.*, 3×10^{-10} cm² s⁻¹ [19] and 3×10^{-11} cm² s⁻¹ [20], respectively.

Acknowledgement

Mr Steve Swart of Delta (EMD) (Pty) Ltd, is thanked for undertaking the particle-size analyses. Mr H. Lachmann of the National Chemical Research Laboratory, CSIR, is thanked for the hydrogen-ion analyses.

References

- 1 H. Ikeda, U.S. Pat. 4,133,856.
- 2 H. Ikeda and S. Narukawa, J. Power Sources, 9 (1983) 329.
- 3 J. C. Hunter, J. Solid State Chem., 39 (1981) 142.
- 4 M. M. Thackeray, W. I. F. David, P. G. Bruce and J. B. Goodenough, *Mater. Res. Bull.*, 18 (1983) 461.
- 5 A. Mosbah, A. Verbaere and M. Tournoux, Mater. Res. Bull., 18 (1983) 1375.
- 6 W. I. F. David, M. M. Thackeray, L. A. de Picciotto and J. B. Goodenough, J. Solid State Chem., 67 (1987) 316.
- 7 J. C. Hunter and F. B. Tudron, Proc. Electrochem. Soc., 85(4) (1985) 441.
- 8 M. M. Thackeray, P. J. Johnson, L. A. de Picciotto, P. G. Bruce and P. G. Goodenough, *Mater. Res. Bull.*, 19 (1984) 179.
- 9 M. M. Thackeray and A. de Kock, J. Solid State Chem., 74 (1988) 414.

- 10 G. Pistoia, J. Power Sources, 9 (1983) 307.
- 11 D. W. Murphy, F. J. Di Salvo, J. N. Carides and J. V. Waszczak, *Mater. Res. Bull.*, 13 (1978) 1395.
- 12 S. Basu and W. L. Worrell, in P. Vashishta, J. N. Mundy and G. K. Shenoy (eds.), Fast Ion Transport in Solids, North-Holland, Amsterdam, 1979, p. 149.
- 13 M. M. Thackeray, W. I. F. David and J. B. Goodenough, *Mater. Res. Bull.*, 17 (1982) 785.
- 14 G. Pistoia, M. Pasquali, M. Tocci, V. Manev and R. V. Moshtev, J. Power Sources, 15 (1985) 13.
- 15 T. Hirai and I. Tari, Prog. Batteries Solar Cells, 3 (1980) 157.
- 16 W. K. Zwicker, W. O. J. Groeneveld Meijer and H. W. Jaffe, Am. Mineral., 47 (1962) 246.
- 17 JCPDS Powder X-ray diffraction file: 14-644.
- 18 W. I. F. David, M. M. Thackeray, P. G. Bruce and J. B. Goodenough, Mater. Res. Bull., 19 (1984) 99.
- 19 J. Vondrák, I. Jakubec and J. Bludska, J. Power Sources, 14 (1985) 141.
- 20 A. Zamouche and F. Dalard, Ext. Abstr., 6th Int. Conf. Solid State Ionics, Garmisch Partenkirchen, F.R.G., Sept. 6 - 11, 1987, p. 627.